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Aligning Spatially Constrained Graphs
Vikram Ravindra, Huda Nassar, David F. Gleich, Ananth Grama

Abstract—We focus on the problem of aligning graphs that have a spatial basis. In such graphs, which we refer to as rigid graphs,
nodes have preferred positions relative to their graph neighbors. Rigid graphs can be used to abstract objects in diverse applications
such as large biomolecules, where edges corresponding to chemical bonds have preferred lengths, functional connectomes of the
human brain, where edges corresponding to co-firing regions of the brain have preferred anatomical distances, and mobile device/
sensor communication logs, where edges corresponding to point-to-point communications across devices have distance constraints.
Effective analysis of such graphs must account for edge lengths in addition to topological features. For instance, when identifying
conserved patterns through graph alignment, it is important for matched edges to have correlated lengths, in addition to topological
similarity.
In this paper, we formulate the problem of rigid graph alignment and present a method for solving it. Our formulation of rigid graph
alignment simultaneously aligns the topology of the input graphs, as well as the geometric structure represented by the edge lengths,
which is solved using a block coordinate descent technique. Using detailed experiments on real and synthetic datasets, we
demonstrate a number of important desirable features of our method: (i) it significantly outperforms topological and structural aligners
on a wide range of problems; (ii) it scales to problems in important real-world applications; and (iii) it has excellent stability properties,
in view of noise and missing data in typical applications.

Index Terms—Graph Alignment, Rigid Body Alignment, Human Brain Connectomics

F

1 INTRODUCTION

G RAPH databases store data abstracted from diverse
systems ranging from social networks to biomolecular

interactions. In many such graphs, node positions are con-
strained in space relative to their topological neighbors. We
refer to such graphs as rigid graphs. An intuitive example of
a rigid graph is an abstraction of a molecule, with nodes
corresponding to atoms, and edges to bonds. Bonds be-
tween specific atom pairs have well-defined lengths (e.g., a
Hydrogen-Hydrogen bond has a preferred length of 74pm, a
Carbon-Carbon bond, 154 pm, etc.). Bonds may be stretched
or compressed, however, their potential energy increases in
the process, and the molecule releases this energy in kinetic
form to return to its native structure. Note that the precise
interaction models (interaction potentials) are considerably
more complex – however, this high-level description is
illustrative of our concept.

As another example of rigid graphs, we consider com-
mon models for the human brain connectome. The brain
connectome is constructed by correlating and thresholding
the activity levels of different regions of the brain repre-
sented as time series. The resulting connectome is modeled
as a rigid graph, with nodes corresponding to regions of
the brain and edges to nerve bundles, which have preferred
lengths in particular species. Abstractions of functional ac-
tivity in the brain in the form of a connectome can be used
for various purposes. It can be used to characterize sub-
networks associated with specific activity or stimulus. It
can also be used to understand changes in structure and
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function through progression of disease. In the event of
traumatic brain injuries (and subsequent recovery), it can
be used to understand loss of function and recovery.

There have been significant efforts aimed at formulating
and solving a variety of analytics problems on graphs.
Among these, solutions to computation of modularity [1],
[2], centrality [3], [4], alignment [5], and clustering [6], [7]
have received significant research attention. Solutions to
these problems are typically topological in nature – their
cost functions are based on the presence or absence of edges,
and typically do not simultaneously consider the preferred
relative positions of nodes. For example, graph clustering
aims to identify densely connected subgraphs in a larger
graph, alignment aims to identify conserved subgraphs with
high edge overlap, and centrality aims to identify edges that
are critical (e.g., carrying large numbers of shortest paths).
When formulating these problems on rigid graphs, one must
generalize associated cost functions to account for preferred
edge lengths, and derive techniques for optimizing these
cost functions.

Rigid graph alignment aims to find correspondences be-
tween nodes in two input graphs such that edge mappings
induced by these correspondences are highly correlated in
terms of their lengths. Conventional formulations of related
problems focus on structural alignments, which identify
structural transformations such as translation, rotation, and
dilation, to maximize structural overlap. Topological graph
alignment techniques aim to identify node correspondences
with the objective of maximizing edge overlaps (without
considering edge lengths). Rigid graph alignment integrates
both structural and topological alignment into a single objective
function. We formalize this objective function and present
a novel method for optimizing it. We show that our solu-
tion outperforms state of the art structural and topological
alignment techniques using both real and synthetic datasets
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Fig. 1: Illustration of two brains with functional network
shown in one hemisphere. The two networks are similar in
terms of node placement, and pattern of edges, but are not
structurally identical – the second brain is slightly larger and
mis-oriented (in imaging), with respect to the first brain.

based on application metrics as well as network-based mea-
sures.

We motivate our rigid graph alignment problem formu-
lation using an important application in the analyses of
3D brain images. It has been hypothesized that cognitive
processes manifested in MRI images are unique to individ-
uals [8]. Stated differently, it is possible to uniquely identify
an individual using their resting state MRI from among a
given set of MRI images. Such analyses can be performed
by matching structural features, by registering to a common
coordinate, or by extracting networks of functional activity
and aligning these networks (Figure 1). Our rigid graph
alignment model incorporates both anatomical (structural)
and functional (connectomic) information by iteratively im-
proving on the quality of network match using a (topolog-
ical) network aligner, and quality of structural match using
rigid body transformations (Figure 2). This ensures that we:
(i) do not suppress signals unique to an individual; and (ii)
obtain anatomically consistent alignments. Owing to struc-
tural and functional uniqueness of individuals, we hypothe-
size and validate that the quality of alignment between two
networks of the same individual (taken across two distinct
imaging sessions) should be higher than that between two
different individuals, and that “rigid graph alignment” is a
critical methodological basis for such alignments.

Summary of Contributions. The paper makes the fol-
lowing technical contributions: (i) it mathematically for-
mulates the rigid graph alignment problem and puts the
problem in the context of existing graph alignment and
structural alignment problem formulations; (ii) it proposes
a solution to the rigid graph alignment problem based on
block coordinate descent; (iii) it comprehensively evaluates
the performance of the proposed solution on real-world
and synthetic graphs and demonstrates significant perfor-
mance improvement over state-of-the-art aligners; (iv) it
characterizes the robustness of the solution and the impact
of various problem parameters through a comprehensive
study on synthetic graphs and (v) demonstrates the fea-
sibility of using Rigid Graph Alignment to register pairs
of functional MRIs, without requiring normalization to a
standard coordinate system. This paper significantly builds
on the preliminary results presented by us [9].

2 RELATED LITERATURE

Network Alignment Early formulations and applications
of network alignment aimed to find matches in small
chemical networks [10]. This was largely limited to exact
graph matching (or subgraph isomorphism). Subsequent
work by Zelinka [11], [12] is credited with the formalization
of the idea of distances between pairs of graphs. These
efforts primarily worked with graph isomorphisms as well.
The first methods to allow for approximate matches used
the Hungarian Method to find matches on weighted ad-
jacency matrices [13]. Current scalable network alignment
techniques are typically approximate – they allow for un-
matched edges, multiple matches, graphs of different sizes,
etc. Modern alignment techniques broadly fall in two cat-
egories – global and local. Global aligners optimize over
the entire graph, and they reward decisions that benefit
a global objective. IsoRank [5], [14] is a popular global
network alignment method. Matches in IsoRank are driven
by similarity of neighbourhoods of pairs of nodes in two
graphs. There are many variants of IsoRank, such as the
approximation by Kollias et al. [15] and adaptation of Iso-
Rank to multiple graph alignment [16]. A linear relaxation
of the QP IsoRank formulation is described by Klau et al.
[17]. The second class of aligners are local aligners, such
as AlignNemo [18], which find sub-graphs that match well.
The optimization criteria rewards locally accurate matches,
while not taking a global view of optimality. Using a local
network alignment approach, Lässig et al. [19] successfully
align gene regulation networks in E. coli. In addition to
pair-wise alignment techniques, the problem of multiple
network alignment has also been investigated. Methods for
multiple network alignment include IsoRankN, along with
other more recent techniques [20], [21], [22].

Network Alignment Algorithms. While run-time is a
primary consideration for network aligners, the ability to
align large graphs also requires memory efficiency. Methods
such as GRAAL [23] and GHOST [24] are memory efficient,
but require cubic run-time. Mohammadi et al. [25] show
that a low-rank approximation of the similarity matrix in
the IsoRank formulation can reduce memory requirement
substantially. In EigenAlign, Feizi et al. [26] utilize the
dominant eigen-vector of product-graph matrix to find a
matching between the vertices of the graphs by solving a
maximum-weight bipartite matching problem on a dense
bipartite graph.

A natural approach to limit the search-space of poten-
tial matches involves the use of domain knowledge, or a
prior that informs the aligner of possible matches that are
meaningful in context to the application. Examples of these
approaches include the previously mentioned IsoRank. A
message passing algorithm netalignbp by Bayati et al. [27]
has been shown to be efficient in matching large, sparse
graphs. In this paper, we use graph alignment techniques
that incorporate prior knowledge. While we will use ne-
talignbp in our results, we note that our meta-algorithm is
agnostic to the network aligner, as long as it allows for the
incorporation of a prior.

Heimann et al. [28] introduce a greedy approach to
identify node matchings by aligning their latent feature
representations. In the first step, graph attributes such as
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Fig. 2: A demonstrative example showing iterative improvement in alignment by Rigid Graph Alignment. The two blue
planes are the two graphs that we aim to align. The vertical lines represent to predicted node correspondences – orange
lines represent wrong predictions and blue lines represent correct predictions. As the top graph is rotated to structurally
align better with the bottom graph, quality of network alignment also increases significantly.

degree and neighbors are used to establish the identity of
nodes. Following this, a similarity matrix is computed for
pairs of nodes across the two graphs on the basis of the
previously established attributes. Then, nodes are matched
in a greedy fashion. In a method named CONE-Align,
Chen et al. [29] embed nodes of both graphs using a
GNN. Then, they align the embeddings using Wasserstein
Procrustes. Finally, they use euclidean distances to match
pairs of nodes.

The problem of alignment of social networks with loca-
tion data was explored by Riederer et al. [30]. While these
methods use node and/ or edge attributes to construct sim-
ilarity measures between nodes, they are not well suited for
the applications that motivate our approach. We explicitly
leverage positions of nodes as rich sources of information,
and their geometric transformations to improve the quality
of alignment.

Network Alignment in Databases. The problem of
graph alignment is also commonly applied to databases.
Melnik et al. [31] introduce a meta algorithm to match
different data structures, or models. These models are ab-
stracted as graphs, and network alignment algorithms are
used to find matching nodes. In this application, network
alignment is used to manipulate and maintain schemas and
match results. However, human intervention is required
to validate the matches. In [32], the problem of alignment
between versions of evolving RDF databases is explored.
In particular, the paper proposes a method to align nodes
of two consecutive versions of an RDF database using a
bisimulation-based approach. The approach is flexible to ac-
commodate nodes without labels (called “blank” nodes). In
another network alignment algorithm for databases, Zhang
et al. [33] define constraints for consistency and align nodes
accordingly.

Network Alignment in Imaging. Graph matching algo-
rithms have also been applied to image alignment. Wiskott
et al. [34] propose a face recognition algorithm, wherein
graph representations of faces are obtained by using a Gabor
Wavelet transform. Following this, a graph matching algo-
rithm is used to correctly match faces. A number of variants
of such elastic graph alignments have since been proposed.
Zhou et al. [35] propose a method to align landmarks on
images of faces. The first step in this method uses affine
transformation to learn shape constraints, which are repre-
sented as graphs. This is followed by network alignment to
find similarities across images. Our approach differs from
these techniques in that we do not assume the presence

of a fixed set of landmarks. Indeed, a small number of
useful landmarks would simplify the problem to requiring
only one iteration of our algorithm. We work with noisy
graphs of different sizes, which requires iterative procedures
to continuously improve structural and graph alignments.
Furthermore, none of these prior methods have been shown
to scale to the size of graphs we target in our work.

Structural Alignment The formulation of the graph
matching problem by [13] can be viewed as a variant of
the Procrustes problem, namely the two-sided Procrustes
Problem [36], where approximate graph matching is made
possible in cases where vertices of the two graphs can be
grouped into parcels or clusters. The problem of structural
alignment itself is often solved using the Iterative Closest
Point (ICP) method of Besl et al. [37]. At a high level, the first
step of ICP selects source-points from both bodies. ICP then
matches the points and computes weights corresponding
to the matches appropriately. Points without a close match
are discarded, and an error minimizing transformation is
computed between the pair of point-clouds. In every itera-
tion, the transformation aims to improve the agreement in
the “shape” of the two point-clouds. Our approach to Rigid
Graph Alignment loosely follows the same formulation. In
our case, the transformation is a rigid body transformation
using Kabsch’s algorithm. However, the important distinc-
tion is that ICP does not view the two sets of source-points
as graphs, and therefore cannot incorporate any connectiv-
ity information.

3 PROBLEM FORMULATION

We motivate our problem of rigid graph alignment by first
discussing existing formulations of graph and structural
alignment. We then contrast our problem with these formu-
lations, and formalize the rigid graph alignment problem.

Formulation of the Network Alignment Problem. The
literature on network alignment is vast, with a large number
of formulations and associated methods. We focus on the
quadratic programming formulation of the network align-
ment objective [27]. Given two graphs A = G(VA, EA)
and B = G(VB , EB), the goal of network alignment is to
find a mapping between VA and VB . We assume here that
|VA| = |VB | = n, though this is not required in practice
since we can always add empty nodes with no edges to the
graph without changing the objective functions. We denote
L ∈ Rn×n to be the matrix that encodes prior knowledge
on likelihood of alignment. If Lij > 0, prior knowledge
indicates that node i in VA potentially aligns with node j
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in VB . The prior typically comes from domain knowledge,
and pushes the solution towards likely mappings, while
simplifying the problem of network alignment.

The aim of the alignment problem is to find a matching
M from VA to VB using only the prior matrix L and
adjacency matrices of the two graphs. We define X ∈ Rn×n

to be a matrix of the same dimensions as L to encode
matchingM:

Xij =

{
1 if i ∈ VA is matched with j ∈ VB underM
0 otherwise

Under such a mapping, we say that an edge (u, v) ∈ EA

overlaps with an edge (u′, v′) ∈ EB if u matches u′ and v
matches v′ under the matchM.

Using this formulation, the goal of graph alignment is to
construct matchingM that maximizes a linear combination
of edge overlap and matching weight. We can search over
matchings by looking for X,

Xij ∈ [0, 1], ∀i ∈ [|VA|],
∑

j Xij ≤ 1, (1)

∀j ∈ [|VB |],
∑

i Xij ≤ 1 (2)

then

overlap of matchingM = A•XBXT =
∑

ij Aij(XBXT )ij
(3)

Here, we use the adjacency matrices A and B for the
graphs and • to represent a matrix inner product (A • B =∑

ij AijBij . The overall objective is given by:

max
X

αL •X + βA •XBXT

s.t.
∑

i Xij ≤ 1 ∀j = 1 . . . |VB |,∑
j Xij ≤ 1 ∀i = 1 . . . |VA|, Xij ∈ {0, 1}

(4)

The first term of the objective, i.e., L •X incentivizes the
non-zeros of X (the matches) to overlap with the positive
entries of L, thereby driving the solution towards a match-
ing consistent with prior information. Parameters, α, β are
non-negative constants that we can use as parameters to bal-
ance the relative importance of edge overlap and matching
weights.

Formulation of structural alignment. The problem of
structural alignment between two bodies aims to find
a transformation that increases the similarity in their
“shapes”. In our work, we focus on rigid body transforma-
tions between two sets of points, wherein the relative po-
sitions of the points are preserved after the transformation.
The more general version of the problem, popularly known
as the Orthogonal Procrustes Problem was first solved by
Schönemann [38]. It aims to find an orthogonal transforma-
tion that reduces the distance between two matrices in the
Frobenius norm. Formally, for any two matrices Y and Z ,
the problem minimizes:

min
Ω

||Y − ZΩ||2F

s.t. ΩTΩ =I
(5)

In our setting, the matrices Y and Z correspond to the
physical positions of the graph nodes (or node coordinates) in
d dimensions; CA, CB ∈ Rn×d. Our objective is to construct
the rigid body transformation between the sets of matched

nodes of the two graphs. In other words, we aim to find
rotation matrix R̂ ∈ Rd×d and translation vector t̂ ∈ R1×d

such that:

CA = CBR̂ + 1t̂ (6)

where, R is an orthogonal matrix (i.e. R̂
T

R̂ = I) and 1 is the
vector of ones of length n. As per convention, we pad CA

and CB by a vector of ones to create the “homogeneous”
coordinate system (for convenience in notation, we do not
explicitly show this detail). This allows us to combine ro-
tation matrix and the translation vector into one matrix Ω
as:

Ω =

[
R̂ 0
t̂ 1

]
(7)

We can now recast the problem as:

min
Ω

||CA − CBΩ||2F (8)

The first solution to this problem was proposed by
Kabsch [39]. We use a related SVD-based method due to
Sabata et al. [40], which is empirically stable, as shown by
Eggert et al. [41]. First, we center both sets of coordinates.

µA =
1

n

n∑
i=1

CAi CA = CA − 1µA (9)

µB =
1

n

n∑
i=1

CBi CB = CB − 1µB (10)

Here, CAi and CBi refer to the coordinates of the i-th nodes
of graphs A and B. We have, µA, µB ∈ R1×d. Define H =

C
T
ACB , then the estimated rotation matrix R̂ is given by:

R̂ = VUT , (11)

where V and U are orthonormal matrices that are obtained
from SVD of H.

The optimal translation t̂ is given by:

t̂ = µA − µBR̂ (12)

When det(R̂) = +1, this process works well. However,
if the graph is planar or with large amounts of noise, det(R̂)
can become −1. In this case, the rotation matrix R̂ becomes:

R̂ = V

1 1
det(VUT )

UT

We can estimate scaling between the two bodies repre-
sented by the graphs using more generalized formulations
of the Procrustes Problem. Instead, we make a simplifying
assumptions that both coordinate systems are drawn from
the same physical units. This assumption also allows us to
implicitly bypass issues that arise from nodes being placed
in different coordinate systems.
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3.1 Rigid Graph Alignment.

We now define our problem of rigid graph alignment. Given
two graphs A = G(VA, EA, CA) and B = G(VB , EB , CB),
our goal is to find a matching M between the vertices VA
and VB , such that the relative positions of the nodes (implic-
itly coded by the co-ordinates CA, CB ∈ Rn×d) is preserved.
Combining the objective functions of network alignment
and rigid body alignment, as described in Equations 4 and 8,
our objective function for rigid graph alignment can be written
as:

F = max
X,Ω

αL •X + βA •XBXT − γ||CA −XCBΩ||2F

s.t.
∑

i Xij ≤ 1 ∀j = 1 . . . |VB |,∑
j Xij ≤ 1 ∀i = 1 . . . |VA|, Xij ∈ {0, 1}

(13)
As before, L • X quantifies the consistency between the
prior L and the mapping of vertices across the two graphs
X. The second term, A • XBXT , denotes the number of
edges that are aligned between the two graphs, after the
nodes of B are permuted by the matching X. The final term,
||CA −XCBΩ||2F incorporates structural alignment. In this
formulation, XCB denotes the conformably permuted set of
coordinates of graph B after alignment.

Weights α, β and γ are parameters for the user to adjust
the relative importance of the prior, graph matching, and
structural alignment. With α = 1, β = 0, γ = 0, the problem
reduces to the maximum weight matching problem, where
the aligner is driven solely by prior knowledge and not
connectivity information. When α = 0, β = 1, γ = 0, it
is the solution to the problem of maximizing edge overlap,
and when α = 0, β = 0, γ = 1, the problem is simply rigid
body transformation.

As discussed before, the residual error in the third term
of Equation 13 can be minimized using the generalized
Procrustes method, once we have the set of matching ver-
tices. This is provided by the network aligner. For ease
of analysis, we view X as a permutation matrix (which
makes X orthogonal, or XTX = I). Then, the error term
corresponding to structural alignment can be expressed as:

‖CA −XCBΩ‖2F (14)

= tr[(CA −XCBΩ)T (CA −XCBΩ)]

= CA • CA + XCBΩ •XCBΩ− 2CA •XCBΩ

= CA • CA + CBΩ • CBΩ− 2CAΩTCT
B •X (15)

For a given transformation matrix Ω, using Equation 15,
we can rewrite the objective function as

F = max
X,Ω

Network Alignment︷ ︸︸ ︷
αL •X + βA •XBXT +γ CAΩTCT

B •X︸ ︷︷ ︸
Structural Alignment

s.t.
∑

i Xij = 1 ∀j = 1 . . . |VB |, ΩTΩ = I,∑
j Xij = 1 ∀i = 1 . . . |VA|, Xij ∈ {0, 1}

(16)
This re-statement of our objective function suggests that the
search for the optimal pair of X and Ω would maximize net-
work alignment and structural alignment, while conforming
to prior information. Furthermore, the structural alignment
term rewards similarity between the two ordered sets of

coordinates. Premised on the key observation that the two
objectives depend on, and reinforce each other, we propose
an algorithm that alternately optimizes the two terms.

X(t) = argmax
X

F(X,Ω(t)) (17)

Ω(t+1) = argmax
Ω

F(X(t),Ω) (18)

This formulation motivates our rigid graph matching algo-
rithm.

3.2 Rigid Graph Matching Algorithm

We split the task of rigid graph matching into two stages
wherein we alternately optimize for network and structural
alignment.

With Ω fixed, then the problem reduces to the following
network alignment problem:

F = max
X

Network Alignment︷ ︸︸ ︷
(αL + γCAΩTCT

B) •X + βA •XBXT

s.t.
∑

i Xij = 1 ∀j = 1 . . . |VB |, ,∑
j Xij = 1 ∀i = 1 . . . |VA|, Xij ∈ {0, 1}.

(19)
Here, the matrix P = αL + γCAΩTCT

B serves as the
prior information on how likely pairs of nodes are to align.
However, CAΩTCT

B is a dense matrix; this adversely affects
the runtime of network aligners. We avoid this by limiting
the number of non-zeros using suitable distance or size of
neighborhood constraints, and directly use the intuition that
close nodes under the transformation Ω will be more likely to
align. Towards that end, let C̃B = CBΩ(t) be the current
transformation of the coordinates. Then, we consider the
following choices for P:

First,

Pi,j =

γ + αLi,j

∥∥∥CAi − C̃Bj

∥∥∥2
2
≤ ε

αLi,j otherwise
(20)

where ε denotes a small neighborhood. Alternatively, we
can set the ij-th entry of L to be inversely proportional to
the distance between the i-th node of A and the j-th node
of B in a co-registered space.

Pi,j =

αLi,j + γexp(−
∥∥∥CAi − C̃Bj

∥∥∥2
2
)
∥∥∥CAi − C̃Bj

∥∥∥2
2
≤ ε

αLi,j otherwise
(21)

Yet another option is to match node i of graph A with one of
its k-nearest neighbours. The distance, dki , of i and the k-th
closest neighbor is given by:

Pi,j =

αLi,j + γexp(−
∥∥∥CAi

− C̃Bj

∥∥∥2
2
)
∥∥∥CAi

− C̃Bj

∥∥∥2
2
≤ dki

αLi,j otherwise
(22)

To perform this first step, we devise a routine – get prior
to implement these choices (a user would select among
them); alternatively, one could provide their own procedure
for this purpose. The second step requires a structural
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aligner, which updates Ω based on the current estimate of
X. This is:

F = max
Ω

Constant in Ω︷ ︸︸ ︷
αL •X + βA •XBXT +γ CAΩTCT

B •X︸ ︷︷ ︸
Structural Alignment

s.t. ΩTΩ = I
(23)

This is again equivalent to a standard structural alignment
problem. Thus, we use an SVD-based method due to Sabata
et al. [40], as discussed in Section 3, to align CA to X(t)CB

(i.e., we permute CB based on X and then seek the transfor-
mation). Stated alternately, in the second step, we align the
spatial positions of nodes after re-ordering them according
to the current estimate of matches computed by the network
aligner. This requires an initial alignment to begin, which we
discuss at the end of the section.

To summarize, in step (i), we maximize the network
alignment term αL • X + βA • XBXT with the term
γ||CA − XCBΩ||2F approximately fixed, whereas in step
(ii), we maximize −γ||CA − XCBΩ||2F with the network
alignment term fixed.

The resulting rigid graph alignment procedure is given in
Algorithm 1. For this algorithm, we assume that there is no
a-priori matrix L given, so the only input to the network
alignment scheme is based on the construction from (22) in
the get prior routine.

Algorithm 1 Rigid Graph Alignment

1: Input: Graphs A(VA, EA) and B(VB , EB), Coordinates
CA and CB , α, β, γ

2: Output: Aligned graphs A and B
3: repeat
4: P = get prior(CA, CB) (see (22))
5: X = align(A,B,P)
6: B = XBXT

7: CB = XCB

8: Ω = transform coordinates(CA, CB) (note that CB is
updated below).

9: CB = CBΩ
10: until converged

This process is continued until convergence is achieved.
The metric for deciding convergence depends on the appli-
cation itself. Natural measures include edge/ node overlap,
or residual error in the structural alignment. In both syn-
thetic (Section 4.1) and real-world (Section 4.3) rigid graphs,
we reach convergence (in terms of edge overlap) within
few iterations. The strength of the meta-algorithm proposed
here is that it works with any graph aligner that admits a
prior, and with any strutural aligner. In our experiments, we
present results using netalignmbp [27] as the graph aligner
and an SVD-based structural aligner [40].

Bootstrap Procedure. In the first iteration, we have no
prior knowledge on correspondence between nodes, nor
do we have an estimate of the transformation required to
map the physical position of nodes. To overcome this, we
devise a bootstrapping procedure in which we populate the
prior matrix on the basis of similarity of distance profiles.
Specifically, we compute the pairwise distance between all

pairs of nodes in each of the two graphs. Then, we draw
histograms of distances for each of the nodes. The initial
estimate of potential matches is on the basis of similarity
of these distance profiles. We quantify the similarity using
Pearson Correlation. We enforce sparsity by thresholding
the correlations, so as to retain only significant entries.
Pearson Correlation, and therefore the distance profiles that
we construct, are invariant to rotations, translations and
scaling.

3.3 An iterative illustration
In Figure 2, we show an illustrative example of the working
of Rigid Graph Alignment on a synthetic graph. The figure
shows two graphs, represented by the two blue planes.
The vertical lines show node correspondence, as predicted
by the network aligner. The orange lines represent pairs
of nodes wrongly matched, and blue lines represent pairs
of nodes correctly matched. An iterative improvement in
quality of network alignment is observed, as evidenced by
the increase in blue vertical lines. At the same time, the top
graph is progressively rotated to conform with the lower
graph, thereby increasing structural match.

4 EXPERIMENTAL EVALUATION

We present results from two sets of experiments – the first
set of experiments is performed on synthetic datasets. These
experiments are used to assess the stability of our proposed
method, comparison to state of the art techniques, and
demonstrating runtime characteristics and impact of various
parameters. The second set of experiments is performed on
a real dataset from the Human Connectome Project. These
experiments demonstrate the superiority of our method
on this important problem, while validating a number of
application hypotheses.

4.1 Experiments on Synthetic Datasets
We test the performance of our formulation and method on
synthetically generated structural adaptations of preferen-
tial attachment and Erdős-Rényi (G(n, p)) graphs to assess
the impact of various problem parameters.

Generation of Synthetic Graphs. The process of gener-
ating synthetic rigid graphs involves two steps – (i) spatial
location of nodes; and (ii) assignment of edges between
them. To locate nodes, we first create an evenly spaced d-
dimensional grid (we show results for d = 3), with g (= 100)
points along each dimension. A grid point is assigned a net-
work node on the basis of the outcome of an independent,
(biased) coin toss. If we don’t have the required number of
nodes after sampling all grid points, we randomly sample
from unassigned grid points. This process is continued until
we have the required number of nodes. Note that not all
grid points have network nodes assigned to them.

To assign edges, we consider two strategies: Preferen-
tial Attachment [42] and Erdős-Rényi (G(n, p)) [43]. In the
Preferential Attachment or the Barabási-Albert model, we
start with an initial graph consisting only of node n0. Then,
an incoming node attaches itself to a subset of existing
nodes with probability proportional to their degrees, i.e.,
pi = ki/

∑
j kj , where pi is the probability of attaching
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to node i, which has degree ki. In the G(n, p) model, an
edge exists between any pair of nodes i and j with a
probability p, independent of other edges. We note that our
generation approach is similar to the generation process
for random-geometric graphs [44], [45]. To generate large
graphs, distributed approaches such as the one proposed
by Funke et al. [46] can be used.

Perturbation Schemes. For network alignment, we gen-
erate pairs of networks. The first graph is generated in
accordance with the aforementioned procedure. The second
network is created by adding noise both with respect to the
spatial location of the nodes, as well connectivity profiles of
the graphs. To add spatial noise, the coordinates are rotated
along each axis by θ◦. Then, each coordinate is translated
by a random vector t ∈ Rd. Following this, the coordinates
of each node are independently perturbed by Cn ∈ Rn×d.
Finally, edges are deleted independently with a probability
pd and added with a probability pa. This process yields two
networks with parametrizable differences, thereby allowing
us to characterize the behaviour of both network alignment
and structural alignment.

We quantify performance in terms of correctly identi-
fied edges and node overlap (or node correctness) – the
fraction of correctly paired nodes, which corresponds to
the precision for our problem. Note that these measures
are feasible for synthetic experiments, where the correct
solution is known a-priori.

4.1.1 Impact of perturbation to the adjacency matrix

In this experiment, we add and delete edges, while holding
the relative position of nodes. We allow the entire graph
to be rotated along all axes. We set pd = pa for these
experiments. We repeat the experiment for n = {500, 1000},
d = 3, θ = {1◦, 5◦, 30◦, 60◦, 90◦, 180◦} for both preferential
attachment and G(n, p) graphs.

Figures 3 and 4 show the results of the experiment for
n = 1000, d = 3, θ = 60◦ for preferential attachment
graphs. The performance of both rigid graph alignment and
regular network alignment with respect to edge overlaps
is comparable for low noise; however, rigid graph align-
ment is robust to higher levels of noise (Figure 3). In fact,
edge overlap in rigid graph alignment closely follows the
pattern of true edge alignment. The drop in edge overlap
for regular graph alignment corresponds to a drop in node
alignment, as seen in Figure 4. The node overlap of rigid
graph alignment is, on average, 97.67 ± 1.21%, whereas
the same for regular network alignment is 65.85 ± 3.90%,
across different rotations. In the absence of node noise, the
spatial relationships between nodes are maintained, thereby
leaving edge lengths of overlapped edges unchanged. This
means that a correct rigid body transformation leaves the
two graphs structurally identical, which explains the high
values of node overlap when rigidity of edges is considered.

The results of the same experiment onG(n, p) graphs are
presented in Figures S1 and S2. Similar patterns of behavior
are observed in the case of rigid graph alignment. However,
the absence of patterns in edges in G(n, p), coupled with the
fact that regular graph aligners do not leverage structural
data, causes the edge and node overlap to be substantially
lower.
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Fig. 3: Change in edge overlap with increase in edge
noise in a preferential attachment network, while node
noise is fixed to zero. It can be seen that the overlap in
rigid graph alignment algorithm closely follows the true
edge overlap, whereas edge overlap in regular network
alignment methods is considerably lower at higher noise
levels.
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Fig. 4: Behavior of node overlap with increase in edge
noise in a preferential attachment network, while node
noise is fixed to zero. This graph shows that edge noise
has no impact on the correct identification of nodes for rigid
graph alignment. However, for regular network alignment,
node overlap decreases linearly with increasing edge noise

4.1.2 Impact of perturbation by node movement

In this experiment, we perturb the physical position of
nodes, while fixing the edge noise to zero, i.e., pa =
pd = 0. The nodes are perturbed along each coordinate
by independently sampled, scaled random matrix Cn. The
scaling is done so as to represent the perturbation as a
proportion of the physical size of the network. The ex-
periment was conducted for n = {500, 1000}, d = 3,
θ = {1◦, 5◦, 30◦, 60◦, 90◦, 180◦} for both preferential attach-
ment and G(n, p) graphs.

The results for n = 1000, d = 3, θ = 60◦ in preferential
attachment graphs are shown in Figures 5 and 6. In rigid
graph alignment, the node overlap is 80.35±1.21%, whereas
the same for regular network alignment is 35.85 ± 3.90%.
The decrease in node overlap for high node noise is due
to the fact that large perturbations to individual nodes
decrease the efficacy of the correction made by rigid body
transformations. However, the transformations still make
the graphs structurally similar, which explains the signifi-
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Fig. 5: Relationship between node overlap and node noise
with zero edge noise in a preferential attachment network.
Large perturbation to positions of nodes lead to inaccurate
priors, which explains the decrease in node overlap. How-
ever, rigid body alignment increases similarity between the
networks, which explains the difference in node overlaps
between the two methods.
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Fig. 6: Relationship between edge overlap and node noise
with zero edge noise in a preferential attachment network.
The drop in node overlap corresponds to the drop in edge
overlap.

cant difference in node overlap between the two methods.
Figures S3 and S4 show results for the same experiment

on G(n, p) graphs. These figures show that an absence of
patterns in edges of a G(n, p) graph, coupled with poor
priors due to perturbations in node positions make both
algorithms more sensitive to noise.

4.1.3 Impact of perturbation of both nodes and edges

The effect of perturbing both nodes and edges on edge
overlaps in preferential attachment networks is shown in
Figures 7b and 7a. In rigid graph alignment (Figure 7b), edge
overlaps are more stable for moderate amounts of both edge
and node noise. Edge overlap values track true edge over-
lap. Edge overlap in the case of regular network alignment,
however shows a sharp decline for small amounts of noise.
Note that the scales on the two figures are made identical to
facilitate comparison.

The effect on node overlaps in the same setting is shown
in Figures 8b and 8a. Node alignment in rigid graph align-
ment is determined primarily by the amount of noise in

the location of the nodes. However, regular alignment is far
more sensitive to either noise.

4.1.4 Choice of graph aligners
We compare the performance of the previously used belief
propagation algorithm (Figures 7b and 8b) with the method
due to Klau et al. [17] in Figure S5 and IsoRank [14] in Figure
S6 on preferential attachment networks to assess the impact
of choice of graph aligners. As before, we vary edge and
node noise and record the edge and node overlap in each
case.

We see that the algorithm due to Klau et al. [17] is com-
parable with belief propagation in terms of edge overlap,
however it does slightly worse in terms of node overlap
when the edge noise is high (> 20%). Similarly, IsoRank
performs quite well in terms of edge overlap, however,
node overlap degrades sharply with edge noise. Based on
these observations, we conclude that our meta-algorithm
can indeed be used with a wide variety readily available
network aligners.

In our experiments, we have chosen different network
aligners that admit a prior. This is motivated by our for-
mulation which suggests that improved structural align-
ment leads to improved network alignment (and vice-
versa). However, many network alignment methods such
as ConeAlign [29] do not require such prior information.
In Figures S7 and S8, we show that the performance of
ConeAlign, as measured by edge and node overlaps is
comparable to other network alignment algorithms run in
isolation (i.e., outside of Rigid Graph Alignment). Since
ConeAlign does not use spatial constraints to compute
alignments, the edge and node overlaps are much lower
than Rigid Graph Alignment, especially as more noise is
introduced into the graphs. We note that a fair comparison
of Rigid Graph Alignment with methods that do not admit
prior information (such as ConeAlign) would be possible
only if structural information is somehow encoded into
its input.

4.2 Runtime Considerations
Our rigid graph alignment method is an iterative process,
where a network aligner is called at every iteration. As such,
it can be used in conjunction with any aligner that accepts
a prior. Hence, the runtime depends primarily on the base
alignment technique and is linear in the number of alternat-
ing steps. Our choice of the network alignment algorithm –
netalignmbp [27] takes O(nnz(A ⊗ B) + |EL| +matching),
where EL is the number of edges in the prior L. Here,
O(matching) is the complexity of bipartite matching (Khan
et al. [47]), which depends on the matching algorithm used.
In typical experiments, as we have shown, a small number
of alternating steps yield significant improvement in solu-
tion quality.

4.3 Analyzing the Human Functional Connectome
We present experimental results on networks drawn from
functional human connectomes. Specifically, we apply the
rigid graph alignment algorithm to distinguish between
individuals – the “identifiability” problem in functional
connectomes. Given a dataset of multiple functional MRIs
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Fig. 7: Heatmap showing edge overlaps for various degrees of edge and node perturbations in a preferential attachment
network with: (a) regular network alignment; and (b) rigid graph alignment. In low noise regimes, the edge overlap of a
regular network aligner matches the rigid graph aligner. However, at moderate noise levels, the number of edges recovered
falls sharply. However, in rigid graph alignment, we are able to recover most edges. Even with higher edge noise, edge
overlap closely matches the true edge overlap.
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Fig. 8: Heatmap showing node overlaps for various degrees of edge and node perturbations in preferential attachment
network with: (a) regular network alignment; and (b) rigid graph alignment. In regular network alignment, node overlap
is affected by increasing values of either or both noise models. However, rigid graph alignment is observed to be much
more robust.

gathered from a population of individuals, we seek to find
images belonging to the same individual. We do this by
aligning pairs of functional networks. The intuition behind
these experiments is that networks belonging to the same
individual, across imaging sessions and acquired using dif-
ferent instruments are more similar to each other than to
networks drawn from different individuals. We demonstrate
that our method achieves significant improvement in terms
of alignment quality over state-of-the-art network alignment
techniques that do not take rigidity of graph into account.
This translates to better accuracy in correctly identifying
networks (and therefore, images) belonging to the same

individual.

4.3.1 Dataset

The dataset we work with is part of the Young Adult
Database of the Human Connectome Project, as described
in VanEssen et al. [48]. The dataset contains medical images
of the brain collected from over 1100 subjects aged between
21 and 35. The images were acquired across multiple-sites
and include structural and functional modalities. They in-
clude structural, diffusion and functional MRI, Magnetoen-
cephalography (MEG), and Electroencephalography (EEG)
in both resting state and seven tasks.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3206823

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on January 09,2023 at 17:31:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING , VOL. VV, NO. NN, MM YYYY 10

The resting state functional MRI were collected in two
sessions. Each session lasted for 30 minutes. The voxels were
isotropic, with side 2mm. The images were acquired once
every 720 ms. The detailed acquisition protocol is presented
in Smith et al. [49]. In our experiments, we used the resting
state images from 20 subjects.

4.3.2 Preprocessing Steps
Functional MRIs can be thought of as a collection of time-
series data. Each time-series records neuronal activity of a
specific voxel in the brain, and hence has an associated 3D
coordinate. Raw functional MRI data is typically noisy, and
hence requires an effective pre-processing stage. A common,
unavoidable source of error is due to head-motion of sub-
jects. We correct for this error by aligning all (volumetric)
images to the image in the first time slice using FSL’s Linear
Image Registration Tool (MCFLIRT) [50]. We follow this by
skull-stripping using FSL’s Brain Extraction Tool (BET) [51].
To create reasonably sized images, we re-sample all voxels to
4mm. This allows us to run network alignment algorithms
in reasonable time. We mask out all non-brain voxels, along
with voxels with low variance. We vectorize the remaining
relevant voxels to create a voxel × time matrix. We then use
a bandpass filter with upper and lower limits set to 0.08Hz
and 0.001Hz, as it has been observed that low-frequency
fluctuations are effective in capturing spontaneous firings of
resting-state functional MRIs. We also perform global signal
regression, but do not observe significant difference in the
final results if this is removed.

We compute Pearson correlation between all pairs of
voxels to create a voxel × voxel similarity matrix. We spar-
sify this correlation matrix to create the adjacency matrices,
by thresholding such that we retain only the top 5% of the
(non-diagonal) entries. Each edge of this network reflects
coherence in firing.

The key difference between our pre-processing pipeline
and other pre-processing pipelines is that we do not reg-
ister the images to a standard coordinate system (such as
MNI) – if we did this, we would know the identity of
each voxel, thereby making the job of the network aligner
trivial. Instead, we work on un-registered, non-standarized
images. We will use rigid graph alignment to register the
functional networks derived from the images, using graph
properties while respecting the rigidity constraints imposed
by physical layout of the voxels. This has the advantage that
individual specific fine-grained artifacts are not smoothed
over by the registration process – thus enabling more re-
solved processing.

4.3.3 Rigid Graph Alignment Yields Higher Edge Overlap
First, we show that Rigid Graph Alignment substantially
improves edge-overlap, which is an intuitive and commonly
used network alignment metric. Recall that the edge overlap
of two graphs A and B under a matching X is defined
as A • XBXT . Since our final goal is to distinguish indi-
viduals, we define intra-subject alignment as the process
of aligning pairs of networks belonging to the same in-
dividual (across sessions) and inter-subject alignment as
the process of aligning pairs of networks across subjects.
We run intra-subject and inter-subject alignments using
Rigid Graph Alignment for a randomly selected subset of
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Fig. 9: Rigid Graph Alignment increases edge-overlap
when aligning two functional networks belonging to the
same subject. In this figure, we show the improvement in
edge-overlap in two typical intra-subject alignments. The
first iteration corresponds to the edge-overlap that is ob-
tained by using a regular network aligner, whereas the final
iteration corresponds to the edge-overlap due to rigid graph
alignment. Observe that it takes few (typically less than 20)
iterations for the algorithm to converge.

20 subjects. We populate the prior on the basis of spatial
proximity of voxels by limiting possible matches of a node
in one graph to a fraction (10%) of the closest nodes in the
other graph. We give equal weights to the prior, network
aligner and structural aligner (i.e, α = β = γ = 1). The
convergence criterion is defined as 0.1% change in edge-
overlap between consecutive iterations. We found that the
percentage of edges that overlapped after only network
alignment was 20.18 ± 4.2%. Note that this corresponds to
the performance of a network aligner that does not take
rigidity of edge-lengths into account. On the other hand,
Rigid Graph Alignment yielded edge overlap of 53.05±12.5%
on convergence. The improvement in performance is due
to an iterative improvement in network alignment quality,
driven by successive improvement of quality in structural
alignment. The improvement in intra-subject alignment can
clearly be seen in Figure 9. We consistently observed slower
improvement in the first few iterations, owing largely to
poorly (or ill-) informed priors. However, subsequent iter-
ations rapidly improved the quality of alignment, due to
more accurate priors.

To show the statistical significance and robustness of
our method, we perform the following test: we transform
the coordinate-system of one of the brains with a random
rigid-body transformation, which is to say that we randomly
orient one of the brains for 100 random trials. In each case,
the edge overlap by rigid graph alignment is higher than
other aligners (netalignmbp, netalignmr [17], [27], IsoRank
[5]).

4.3.4 Residual Error in Structural Transformation as a Met-
ric for Network Alignment
In the previous section, we showed that rigid graph align-
ment improves the quality of alignment between a pair
of networks. However, our goal is to identify pairs of
networks belonging to the same individual from a dataset
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of such networks. Our intuition is that networks drawn
from the same individual must have more in common
with each other than with networks drawn from other
subjects. However, in terms of edge-overlap there is not a
significant difference between intra-subject and inter-subject
alignment with network alignment alone(20.73±4.45% and
19.62 ± 4.28%). The high overlap in the two histograms in
Figure 10a illustrates this problem. Furthermore, after we
run rigid graph alignment, the problem persists as the edge
overlap of both inter-subject and intra-subject alignments
improve significantly, as seen in Figure 10b. This suggests
that edge-overlap is not the best metric for this applica-
tion. Instead, we find that the residual error in structural
alignment (Equation 8) is a better indicator of identity, as
seen in Figure 10c. For intra-subject alignments, the residual
error, normalized by the number of vertices was found to
be 1.52 ± 0.01%, whereas for inter-subject alignments, it
was 1.99 ± 0.025%. This demonstrates significantly higher
distinguishability from the rigidity metric in rigid graph
alignment. However, regular aligners use spatial constraints
only once in the prior. In Netalignmbp, we see that residual
error in case of intra-subject alignment is 9.4 ± 1.7% and is
10.14±1.5%. Similar results were also observed in IsoRank,
with residual errors in intra- and inter-subject alignments
being 9.81 ± 2.4% and 10.44 ± 3.3%. In both cases, we see
that the residual errors are higher, without clear separation
intra- and inter-subject distributions.

5 CONCLUDING REMARKS

This paper formulates a novel and important problem of
aligning a class of graphs called rigid graphs. The prob-
lem integrates topological and structural alignments into a
single framework, and presents a method for computing
rigid graph alignments. The method is versatile, in that
it admits a range of topological and structural alignment
techniques into a block coordinate descent framework. The
paper presents a detailed experimental study demonstrating
significant performance improvements from rigid graph
alignments over prior methods. In the context of human
brain connectomes, it demonstrates significant improve-
ments in distinguishability of connectomes and identifica-
tion of individual signatures in brains.

Our results open significant new avenues of research in
the area of rigid graph aligners, both in terms of alternate
formulations, and associated methods. For instance, we note
variants of the traditional orthogonal Procrustes method,
such as the weighted orthogonal Procrustes problem [52],
[53] which allows a user to assign higher rewards for accu-
rately transforming an important subset of the points. We
can use these in conjunction with a network aligner that
returns confidence measures for each matching. This ap-
proach fits within our framework of rigid graph alignment
for specific classes of applications, as it ties the structural
aligner more tightly with the network aligner.

AVAILABILITY OF DATA AND MATERIALS

The data from the Human Connectome Project is
made available by the HCP Consortium in http://www.

humanconnectomeproject.org/. The MATLAB implemen-
tation of the alignment algorithms are available in https:
//www.cs.purdue.edu/homes/dgleich/codes/netalign.
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Fig. 10: Histograms showing distributions for quality of intra- and intersubject alignments. (a) Edge-overlap metric after
only network alignment. The poor edge overlap suggests that regular network alignment alone is ineffective for the task
of identifiability in functional connectomes. (b) Edge overlap, after rigid graph alignment. While Rigid Graph Alignment
increases the number of overlapping edges, it does not separate the two distributions. The high intersection suggests
edge-overlap is an ill-suited metric for the task of identifiability in functional connectomes. (c) Residual error in structural
alignment for inter-subject and intra-subject alignments. Here, the values are much better separated than edge overlap,
suggesting that this metric is better suited for brain fingerprints than edge overlap
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N. Pržulj, “Topological network alignment uncovers biological
function and phylogeny,” Journal of The Royal Society Interface,
2010. [Online]. Available: http://rsif.royalsocietypublishing.org/
content/early/2010/03/24/rsif.2010.0063

[24] R. Patro and C. Kingsford, “Global network alignment using
multiscale spectral signatures,” Bioinformatics, vol. 28, no. 23, pp.
3105–3114, 2012.

[25] S. Mohammadi, D. F. Gleich, T. G. Kolda, and A. Grama,
“Triangular alignment tame: A tensor-based approach for
higher-order network alignment,” IEEE/ACM Trans. Comput. Biol.
Bioinformatics, vol. 14, no. 6, pp. 1446–1458, Nov. 2017. [Online].
Available: https://doi.org/10.1109/TCBB.2016.2595583

[26] S. Feizi, G. Quon, M. R. Mendoza, M. Médard, M. Kellis,
and A. Jadbabaie, “Spectral alignment of networks,” CoRR, vol.
abs/1602.04181, 2016. [Online]. Available: http://arxiv.org/abs/
1602.04181

[27] M. Bayati, D. F. Gleich, A. Saberi, and Y. Wang, “Message-passing
algorithms for sparse network alignment,” ACM Trans. Knowl.
Discov. Data, vol. 7, no. 1, pp. 3:1–3:31, Mar. 2013. [Online].
Available: http://doi.acm.org/10.1145/2435209.2435212

[28] M. Heimann, H. Shen, T. Safavi, and D. Koutra, “Regal,”
Proceedings of the 27th ACM International Conference on Information

and Knowledge Management - CIKM ’18, 2018. [Online]. Available:
http://dx.doi.org/10.1145/3269206.3271788

[29] X. Chen, M. Heimann, F. Vahedian, and D. Koutra, “Cone-align:
Consistent network alignment with proximity-preserving node
embedding,” in Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, 2020, pp. 1985–1988.

[30] C. Riederer, Y. Kim, A. Chaintreau, N. Korula, and S. Lattanzi,
“Linking users across domains with location data: Theory and
validation,” in Proceedings of the 25th International Conference
on World Wide Web, ser. WWW ’16. Republic and Canton of
Geneva, Switzerland: International World Wide Web Conferences
Steering Committee, 2016, pp. 707–719. [Online]. Available:
https://doi.org/10.1145/2872427.2883002

[31] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: a
versatile graph matching algorithm and its application to schema
matching,” in Proceedings 18th International Conference on Data
Engineering. IEEE, 2002, pp. 117–128.

[32] P. Buneman and S. Staworko, “Rdf graph alignment with bisimu-
lation,” in International Conference on Very Large Databases (VLDB),
ser. Proceedings of the VLDB Endowment, vol. 9, 2016, pp. 1149–
1160.

[33] S. Zhang and H. Tong, “Final: Fast attributed network alignment,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
knowledge discovery and data mining, ser. KDD ’16. ACM, 2016, pp.
1345–1354.
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